
Abstract

Micro Frontend (MFE) approach is a way to build more scalable and
maintainable frontend applications, but it’s important to have a clear strategy,
a well-defined process, and good communication between the different teams
to ensure a successful implementation. The future of MFEs is likely to see
continued growth and adoption as more and more companies recognize the
benefits of breaking down monolithic front-end applications into smaller, more
manageable components. Managing the Lifecycle of MFE will play a pivotal role
in successful adoption.

WHITE PAPER

MICRO FRONTEND LIFECYCLE
MANAGEMENT

Introduction
MFEs is an architecture pattern that allows you to split a monolithic
frontend application into multiple smaller, self-contained
applications that can run independently. Each MFE is responsible
for a specific area of functionality or feature and communicates with
the other MFEs via APIs or message passing. This approach allows
for easier development, testing, and deployment of the individual
MFEs, as well as greater scalability and flexibility for the overall
application. It also allows for different teams to work on different
MFEs concurrently and independently. With MFE, applications are
split into granular units based on domain/feature and are owned
by independent teams. The MFE Lifecycle with a strong DevOps
practice ensures all stages from implementation to delivery and
upgrades along with rollback happens in a seamless way.

Key focus of MFE Architecture is.

• Reusability across multiple platforms

• Better Separation of Concern

• Easier to test and deploy.

• Quick and easy to build new features.

• Easy to upgrade/roll out new features (micro)

• Resilient user event response

• Independent from Technology choices

• increased scalability, maintainability, and flexibility

• Micro releases (Micro features releases)

External Document © 2023 Infosys Limited

Integration:
MFEs can be integrated at build time or runtime, each approach has its own set of benefits and trade-offs..

Build Time Integration

Build time integration for MFEs refers to the process of integrating
multiple MFEs together during the build process, rather than at
runtime. This approach can have several benefits, including.

Improved performance: Build time integration can reduce the
number of requests and the amount of runtime code needed to
integrate the MFEs, which can improve the performance of the
application.

Simplified Integration: Build time integration can simplify the
integration process, as the MFEs are already integrated together
when they are built, and there is no need to handle the integration
at runtime.

Reduced complexity: No need to handle the integration of the
MFEs at runtime.

Improved security: By integrating the MFEs at build time, it is
possible to perform security checks and validations at the build
time, which can improve the overall security of the application.

Runtime Integration

Runtime integration for MFEs refers to the process of integrating
multiple MFEs together at runtime, rather than during the build
process. This approach has its own benefits and considerations, such as:

Dynamic Integration: Runtime integration allows for dynamic
integration of MFEs, meaning that MFEs can be added, removed, or
updated at runtime, which can make the application more flexible.

Decoupled Communication: MFEs can communicate with each other
through APIs, events, or message passing, which allows for decoupled
communication between MFEs.

Easy scaling: With runtime integration, it’s easy to scale up or down the
number of MFEs based on the traffic, which can help to improve the

performance of the application.

Better isolation: With runtime integration, MFEs can be isolated from
each other, which can help to improve security and stability of the
application.

Dynamic loading: With runtime integration, MFEs can be loaded
dynamically, which can improve the performance of the application by
reducing the initial load time.

Reduced complexity: No need to handle the integration of the MFEs at
runtime.

Improved security: By integrating the MFEs at build time, it is possible
to perform security checks and validations at the build time, which can
improve the overall security of the application.

In the Build Time Integration Approach, in order to deliver a MFE,
the parent shell application needs to be built everytime. Even
though there could be a refinement to intelligently identify the
MFE that has been modified and do a conditional build, the root
application needs to be deployed for every change in any of the
MFEs.

Whereas in the Runtime Integration approach, every Module (MFE)
is hosted separately, and its location is described by Remote Entry
endpoint and load requested module “on-demand”. This will allow
each development team to focus on their own application, giving
them more autonomy over their application’s direction and release
schedule.

External Document © 2023 Infosys Limited

MFE Frameworks, Lifecycle and Limitations
An MFE framework is a set of tools and libraries that enable the
development, deployment, and integration of MFEs within a
larger front-end application. Some popular MFE frameworks are
single-spa, Webpack Module Federation, Lerna, Bit.dev, Open-

Components, Qiakun, Luigi, Piral.

These frameworks and tools can help to simplify the process of
developing, deploying, and integrating MFEs, making it easier to
create scalable and maintainable frontend applications.

The lifecycle of an MFE typically involves several stages, including:

Development: Each MFE is developed and tested independently,
using the appropriate front-end framework and technologies.

Deployment: MFEs are deployed independently and as part of a
larger front-end application.

Integration: The MFEs are integrated with the main application, and
communication between them is established through APIs or other means.

Maintenance: MFEs are updated and maintained independently,
allowing for faster and more efficient development and
deployment.

Retirement: If an MFE is no longer needed or has reached the
end of its life, it can be retired without affecting the rest of the
application.

Limitations of Current MFEs:

Despite the benefits that exist in Runtime Integration, every time
there is a change, a new deployable artifact is created, and the
existing version is replaced. This is the typical approach that is
followed for Microservices as well. While this seems to work like a
charm, there is an imperative issue in this approach for MFEs.

While doing root cause analysis for any bugs, the development
team would always want to know the version of the artifact that is
deployed. In a Microservices world, this can be figured out using
the image tag/version of the running container. This approach
will not work out for MFE as there is always a single bundle that is
deployed and consumed, and the image/tag will not change unless
there is a change in the base(shell) application.

Uglification and Minification of bundles exponentially increase the
complexity in identifying the version that is deployed.

In a nutshell, to enhance the Lifecyle of MFE, the following
capabilities are required

• Ability to build, test and deploy each MFE independently.

• Changes in any MFE should not require the base application to
be redeployed.

• Avenue for easier root cause analysis in case of any issues

• Seamless way to rollback

• Support for Multiple Environments

• Capability to host per environment configuration details to
enable instant consumption.

• Ability to use cached version of MFE and invalidation.

External Document © 2023 Infosys Limited

Infosys MFE Registry
Infosys MFE Registry is an MFE solution that allows developers to
create, share, and reuse MFEs across different applications and
teams. The goal of is to provide a simple and efficient way to build
and manage MFEs, making it easy for teams to create and maintain
scalable and modular frontend applications. It is built on the
concept of MFE and it’s a solution that can help teams to manage,
share and discover MFEs across different projects and teams, which
can make it easier to create and maintain scalable and modular
frontend applications.

Infosys MFE Registry is built with all the capabilities listed above.

• Offers high-performance, Cloud compatible Object storage.

• Kubernetes powered Platform and can seamless be made
available on every public cloud, every Kubernetes distribution,
the private cloud, and the edge.

• Native Semantic Versioning supports that aims to communicate
the level of compatibility between releases immediately.

• Provides a simple way to automate the build, test, and
deployment process for MFEs, which makes it easier for teams to
develop and deploy MFEs.

• Out of the box support for handling Multiple Environments for
each MFE

• Inbuilt Caching, Compression, Purging and Scavenging
capabilities.

• Greater Interoperability ensuring that MFEs can work together
seamlessly, regardless of the framework or library used to
develop them.

• Eventually as serverless technology becomes more prevalent, it is
likely that MFEs will be developed and deployed using serverless
architecture, which can provide cost savings and scalability.

MFE Registry Components:

Asset: Asset depicts the artifacts of an MFE. It could be html,
JavaScript, stylesheets etc. Infosys MFE registry stores each MFE
in separate structures and has an inbuilt mechanism to group the
same MFE with different versions.

Metadata: Infosys MFE registry provides a unique capability to
provide metadata for each MFE. These metadata are automatically
generated by the MFE registry ranging from environment to version
and other miscellaneous details.

Configuration: Configuration is an important component of MFE
registry. For every environment, the configuration required for the
MFE could be different. For instance, the backend URLs could differ
based on the environment. Configuration provides the capability to
support multiple environments for a single MFE. A better approach
would be to supply a config file and depending on the environment
and the MFE upon loading will access the configuration file and use
the values specified in the configuration file. Infosys MFE Registry
natively supports this approach and all the configuration changes
for supporting different environments can be handled with ease.

Auto Semantic Versioning: Every time an artifact is uploaded
to Infosys MFE registry, it auto generates the version adhering
to Semantic Versioning scheme. This plays a pivotal role in
identifying the latest version of an MFE and rendering all versions
of a single MFE. Adopting Semantic versioning can increase the
maintainability and scalability of the project, as it allows developers
to better understand the impact of updates and make informed
decisions about when to update their dependencies.

Rollback: Rollback provides a capability to remove a version of an
artifact based on the criteria of the development team

Reactive Cache: Reactive Cache is a unique capability which
ensures if an artifact of an MFE has not changed, then it notifies
the client, thus ensuring repeated download of the artifact doesn’t
happen. This plays a huge role in improving the Performance while
rendering and savings the network bandwidth to a huge extent.

Auto Cleanup: Infosys MFE Registry provides the ability to clean
up old Artifacts on a periodic basis. This is a configurable option.
This ensures the last 3 versions of every artifact per environment
is maintained. This capability is provided so that the disk space is
optimally consumed.

External Document © 2023 Infosys Limited

MFE Lifecyle using Infosys MFE Registry
Below flow diagram summarizes how a micro-frontend journey will look like when Infosys MFE registry is used for MFE hosting and lifecycle
management.

Raw flow

External Document © 2023 Infosys Limited

Using CI/CD setup:

MFEs and DevOps go hand in hand, as the MFE architecture
requires a different approach to deployment, testing and
maintenance. Some key considerations for MFE DevOps include:

Automation: Automating the build, test, and deployment process is
essential when working with MFEs, as it allows for faster and more
efficient development and deployment.

Continuous Integration and Continuous Deployment (CI/CD):
Implementing a CI/CD pipeline can help to ensure that MFEs are
always up-to-date and working properly.

Monitor: The MFE is monitored to ensure that it is functioning
correctly and to detect any issues that may arise.

Rollback: A rollback plan should be in place to revert to a previous

version of the MFE in case of any issues.

Promotion: A foolproof Promotion strategy should be in place with
an approval mechanism that ensures the process is consistent and
reliable. The promotion process should also include testing and
validations of the MFE in different environments, to ensure that it
works correctly in each environment. This can include testing for
compatibility, performance, and security.

Deployment: MFEs allow for easy experimentation and
recommendation is to use at least one of A/B testing and canary
releases.

Overall, the DevOps approach for MFEs is focused on automating
the development and deployment process, and on ensuring
that MFEs are always working properly, so teams can focus on
developing new features and improving the user experience.

MFE Delivery – Platform Comparison:
As more and more teams have onboarded into the MFE journey, it is evident that to deliver the MFE to client, a paradigm shift is required
from serving it as a static webapp to an API driven sophisticated endpoint. This will seamlessly enable Client-Side Rendering (CSR) or Server-
Side Rendering (SSR) of MFE.

The following table gives a comparison of popular platforms for delivering MFE by features

MFE Delivery/ loading approaches Bit.Dev Open Components Infosys MFE Registry

Integration Build Time Run Time Run Time

CLI (create, build, publish) Yes Yes Yes

Client-Side Wrapper Yes Yes No

Environment Specific Support No No Yes

Rollback No No Yes

Scavenging (Auto Cleanup) No No Yes

Reactive Consumer Cache
(Request Component by Weak Version e.g.: 1.x.x)

No Yes Yes

External Document © 2023 Infosys Limited

Conclusion:
As enterprises move from legacy
monolithic frontend applications to
adopt an MFE framework, there are new
challenges that arise. It is essential to
have the right strategy and tools to help
with these challenges. We highlighted an
approach that enables organizations to be
confident in their move to modernize their
business operations.

Today, the MFE lifecycle is being
implemented in more organizations to
optimize the entire MFE development/
delivery process. It takes many steps for
an MFE to go from initial idea to market
to enable collaboration across teams.
The major goal of the MFE Lifecyle
management is to keep things running
smoothly and maximize efficiency.

Infosys MFE Registry allows fast-moving
teams to easily build and deploy front-end
components. It abstracts the complexities
and leaves teams with a very structured
and systematic way to develop and deliver
MFEs. It is also a battle tested solution
currently used to deliver micro frontends at
scale and enabling painless MFE delivery.

© 2023 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

Authors

Chidambaram GS
Senior Technologist

Jaskirat Singh Sodhi
Senior Technologist

Priyapravas Avasti
AVP - Senior Principal
Technology Architect

References:

• https://github.com/topics/micro-frontend

• https://opencomponents.github.io/

• https://www.thoughtworks.com/en-in/radar/techniques/micro-frontends

Mentor

mailto:www.priyapravas.infosys?subject=
mailto:mailto:Chidambaram_gs%40infosys.com?subject=
https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fin.linkedin.com%2Fin%2Fchidambaram-gs&data=05%7C01%7CRajigomathi_T%40infosys.com%7C253bcd13bf7b40a76af108db1e5f457d%7C63ce7d592f3e42cda8ccbe764cff5eb6%7C0%7C0%7C638137167563642278%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=tpNFFsYal8cd91jl7OAcKHGwlPTcDlp%2FBADyPj0kTXk%3D&reserved=0
mailto:mailto:Jaskirat.S%40infosys.com?subject=
https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fin.linkedin.com%2Fin%2Fjaskirat-singh-sodhi&data=05%7C01%7CRajigomathi_T%40infosys.com%7C253bcd13bf7b40a76af108db1e5f457d%7C63ce7d592f3e42cda8ccbe764cff5eb6%7C0%7C0%7C638137167563642278%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=hKBGUL83B2sIx8TCgfLfGW%2BuYFA5QB4Ef%2BPCo%2Bl9sjE%3D&reserved=0
mailto:mailto:priyapravas%40infosys.com?subject=
https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fin.linkedin.com%2Fin%2Fpriyapravas&data=05%7C01%7CRajigomathi_T%40infosys.com%7C253bcd13bf7b40a76af108db1e5f457d%7C63ce7d592f3e42cda8ccbe764cff5eb6%7C0%7C0%7C638137167563642278%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=%2F6B%2F53aNvzrfaY%2FLwZ80NzI444tq%2B0JmJpHfwgClQpE%3D&reserved=0
https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

