
WHITE PAPER

MICRO FRONTENDS

Abstract

Over years, quick turnaround on application development/ enhancements
through reduced efforts that aim at highly maintainable applications have
become utmost necessity over result being development of just fully functional
applications. Industry has come a long way from large backend systems to
granular micro-services to try to progress in this direction. Further, advent of
Micro-services has resulted into evolution of monolithic frontends to micro
frontends to take it to the next level.

This paper presents point of view on what Micro Frontends are, how it is
evolved, its principles and where Micro Fronts are more relevant. It provides
various approaches to implement Micro Frontends, trends, and its Maturity
model.

External Document © 2022 Infosys Limited

Introduction ..3

Evolution of Frontends ..3

Why Monolithic frontends aren’t advisable? ..4

Principles of Micro services and hence Micro frontends ..4

Where to leverage Micro frontends ..5

Approaches to implement Micro Frontends ...6

 Approach for isolated micro-apps: ... 6

 Approach for micro-apps on common runtime: ... 6

Comparison of Micro Frontend Approaches ...7

Maturity Model of Micro frontends ...8

Summary ..8

About the authors ..8

Appendix: Deep Dive into Web Component based Micro Frontend Approach9

References... 15

Table of Contents

External Document © 2022 Infosys Limited

Micro frontend is forthcoming architecture
style for user interfaces. It was evolved from
microservices architecture of the application
backend that helped apply its benefits to
front end applications. Collection of individual
Micro frontend applications together compose

Introduction

Evolution of Frontends
Typically, application is divided into frontend,
backend, and data store layers. Decades
ago, front end and backend components
were combined into one single monolithic
application where a change in a user
interface used to have cascading effect on its
business logic that was residing in backend.
Slowly frontend and backend portions of
an application were divided to achieve

a greater application, and it enables delivery of
specific micro frontend application at a time.
Approaches to implement Micro frontend
can be as Isolated Micro Apps or on Common
Runtime. A micro frontend can be composed
of horizontal or vertical split. Micro frontend

is an evolving architectural style and hence
more open-source JS based frameworks
are coming up in the market. A choice of
framework for implementation purely depends
on organizational standards when it comes to
adoption of a specific approach/framework.

better skill alignment, change management
and application maintainability. This then
evolved into one backend system being
leveraged by multiple front-end systems to
achieve reusability but that contributed to
scaling issues for backend systems. Hence
microservices based architecture was
developed to address scaling issues with
the help of large backend systems split into

smaller domain driven micro services and it
resulted into front-end application calling
multiple smaller backends. These nuclear
micro services caused realization of the fact
that frontend applications are still monolith
and hence a necessity to solve issues in
frontends with the help of microservices
design principles, this is when Micro frontend
architecture came up.

External Document © 2022 Infosys Limited

Monolithic frontend applications
aren’t preferred as:

• They have huge codebase built
over the period hence, it becomes
less maintainable. This causes
small change to take longer to
complete.

• Scaling smaller parts of an application
results into scaling larger part of the
application as a part can’t be scaled
independent of another part of an
application.

• Multiple teams are to be involved to
make a change in one of the features

and that becomes time consuming.

• Testing entire monolith application
(after any changes) increases a risk
due to its complexity and eventually
results into slow delivery resulting
into longer turnaround times for
releases.

Principles of Micro services and hence Micro frontends
Principles of microservices that are inherently applicable to micro frontends are:

High Cohesion/Low
Coupling

Independent Team

Technology Agnostic

High Cohesion/ Low Coupling illustrates a single responsibility, it should focus on specific domain
or subdomain, should be autonomous that demonstrates Independently deployable or changeable
unit without affecting any other part. It should be resilient to failure (without impacting other micro
frontends), should be transparent in terms of health of each of the components, and should be
testable with automation tools. Furthermore, two micro frontends should not depend on each other,
else they make a case for combining into a single micro front end application.

Each micro frontend (offering distinct feature or business domain or business function offering value
to business) is owned by a team end to end and a base application can be owned by a dedicated
team whereas entire team of a micro frontend should be cross functional. This improves agility of an
organization and eases communication within the team.

Each micro frontend can be technology agnostic resulting into overall application composed of
multiple frameworks, one per micro frontend. This helps in the cases when any specific technology/
framework becomes obsolete or requires upgrade. In that case, individual micro frontend can
be upgraded or re-architected independently without causing technology debt due to delays in
upgrade/ re-architecture of a complete application based on a single technology/ framework. It
also helps each application to select right technology based on its need than sticking to a common
technology when lightweight framework can serve the purpose at times for a specific application.

Logical approaches of structuring Micro Frontends are horizontal or vertical split. Horizontal split is when one or more micro frontends
are presented within the same webpage side by side whereas vertical split doesn’t present more than one micro application in a
webpage at the same time. Following diagrams depict how horizontal split shows multiple micro apps rendered through a base/ shell
app and how vertical split shows only one micro app within a base/ shell application.

Why Monolithic frontends aren’t advisable?

Vertical SplitHorizontal Split

External Document © 2022 Infosys Limited

User Experience

Microservices Driven

Multiple Teams

Reduced Complexity

Multiple Technology

Technology Upgrade

Independent
Deployments

High Resiliency

All micro frontend applications should offer similar user experience (theming, style etc.) and
performance. Hence architect is suggested to be mindful while using heavy/ high number of
frameworks resulting into performance issues and base application should offer a style guide
for micro applications. Additionally, user interface should be responsive and multiple parts of
an application should be updated upon user action, even though they belong to different micro
frontend applications. Furthermore, an application composed of micro frontend applications should
work consistently across all browsers/ versions.

Micro frontends should be micro services driven to support its functionality resulting into modular
frond end and backend as well.

A team is comprised of multiple sub-teams and each sub-team specializes only in specific domain or
subdomain pertaining to the feature that they deliver.

A reduction in application complexity is to be achieved through decoupling of subset of application
(s) from each other through division of application into multiple independent applications that form
an overall application.

One or more features of an application are planned to be built on different
technology/ framework.

Technology upgrade of subset of an application at a time is anticipated due to technology debt/
challenges within an organization.

Each feature of an application is expected to have its own release cycles,
independent of each other.

High resiliency is one of the key requirements of an application, that can be achieved through
individual micro apps distributed in small chunk of services (covering all layers) independently. This
also offers an advantage of only stipulated portion of an application having an impact as opposed to
the complete application.

Where to leverage Micro frontends

External Document © 2022 Infosys Limited

Approaches to implement Micro Frontends

Micro frontends can be implemented through various approaches as following:

Approach for isolated micro-apps:

Micro applications that aren’t planned to
be on the same runtime and hence are said
to run in complete isolation, can adopt one
of the following approaches:

• Hyperlink or URL based Micro apps:

 Independent micro frontend
applications are linked through a
dashboard of an application through
hyperlinks/ URLs to demonstrate illusion
of them being a single application as
navigation is offered by a common
dashboard. All micro applications use
common CDN and UI components/
guidelines for uniformity. Additionally,
all micro applications should use
common authentication method
to avoid authenticating for each
application separately.

 Adherence to principles:

• High Cohesion/ Low Coupling:
Hyperlink/ URL based approach
adheres to the principles of high
cohesion and individual applications
are testable or changeable. Also, they
can communicate through query
string parameters or micro services
can share data behind the scenes
when involved through a micro
application.

• Separate team owing each micro
application: This principle is also met
as each app is a separate application.

• Technology agnostic: Each micro
app can be developed using any
technology and hence this principle is
met as well.

• Common user Experience: This
principle is met to an extend with
common styles, but user interface
flow can have limitations and hence
can result into poor user experience
as no two micro applications can be
opened at the same time or change in
one can’t render related use case from
another application in the same user
interface screen/ page.

• Feature driven: As each micro app is
separate, it can offer distinct business
value in the form of a specific
business feature and hence hyperlink/
URL based micro app approach meets
this principle.

• Micro services driven: Every micro
app can be driven by backend
micro services and hence there is
no limitation with respect to this
principle using hyperlink/ URL based
approach.

• iFrames based:

 Multiple Micro applications are rendered
through iFrames within user interface
of an application that provides ability to
have all applications in one web page/
screen through base/ shell application,
hence offer better uniformity and
business flows.

 Adherence to principles:

 Adherence to principles that deviate
from how approach of hyperlink or
URL based micro apps adhere to micro
frontend principles is covered below.
Anything that is not covered following
is same as adherence details covered
under hyperlink or URL based micro
apps:

• High Cohesion/ Low coupling:
iFrame based approach adheres
to the principles of high cohesion
and individual applications are
testable or changeable. Also, they
can communicate through events
or background micro services can
share data for micro frontend enable
communication.

• Common user Experience: This
principle is met to an extend with
common styles and user interface
flow can also be rendered seamlessly
to provide greater user experience as
multiple/ all micro applications are
generally rendered within separate
iFrames on the same web page
resulting into updates to related
use case from another application

reflected in the same user interface
screen/ page. But performance
may become an issue resulting into
slightly poor user experience due to
each application based on separate
runtime and/ or JS frameworks.

• Feature driven: As each micro app is
separate, it can offer distinct business
value in the form of a specific
business feature and this principle is
better met than hyperlink/ URL based
approach since multiple applications
are rendered on the same user
interface offering integrated
functional/ business value provided
by multiple apps together.

Approach for micro-apps on
common runtime:

If all Micro applications are planned to be
based on a common runtime, then one of
the following approaches can be adopted
for a micro frontend:

• WebComponents based:

 Each micro app is rendered on a web
page through a web component
(feature of a web-based technology) to
form micro frontend. This results into
memory and resources being shared by
all micro applications. A WebComponent
is made up of custom HTML element
and is included in a web page through
HTML imports. Web components aren’t
tightly coupled with a JS framework but
are formed by HTML, CSS and JS.

 WebComponents meet all principles
of micro frontends. Communication
between micro apps is handled through
events, and no issue related to user
interface are seen with WebComponents
as all WebComponents are a part of
parent DOM and hence sizing related
issue with respect to individual
applications aren’t observed as it’s a
possibility with iFrame based approach,
but performance aspects should be
balanced with limited number of
frameworks used by various micro apps.

External Document © 2022 Infosys Limited

 Web Components allows creation of
custom and reusable HTML tags that
can be used in web pages which works
across modern browsers. Following
three technologies are used together to
create Web Components:

 Custom Elements:

 Custom elements give developers the
ability to extend HTML and create their
own tags. Because custom elements are
standards based, they benefit from the
Web’s built-in component model. The
result is more modular code that can be
reused in many different contexts.

 Shadow DOM:

 Shadow DOM is a web standard that
offers component style and markup
encapsulation. It is a critically important
piece of the Web Components as it
ensures that a component will work in
any environment even if other CSS or
JavaScript is at play on the page.

 HTML Templates:

 With HTML Templates, we create HTML
fragments which remain inactive and
unrendered until explicitly requested.
These can then be reused multiple
times as the basis of a custom element’s
structure.

 Please check Appendix section to
Deep Dive into WebComponents using
Angular Elements.

• JS Framework based:

 JS framework-based approach adapted
for the base/ shell application leads
to additional cost, and it gets difficult
to move away from that framework
over the years resulting into difficulty
to migrate. Hence this approach
should be carefully selected while
implementing micro frontends.

 Examples of JS Frameworks available
in the market to implement micro
frontends are TailorJS, Single-spa,
Puzzle.JS etc.

 JS framework-based approach meets
all principles of micro frontends,
except:

• High Cohesion/ Low Coupling: If
Base/ shell application and one or
more micro applications are based
on a common JS framework, then
changes in one micro application
results into changes in the base
application even though each micro
app is built for specific business
features. This is due to technology
specific constructs that base app/
micro apps are based on. And hence
doesn’t abide by high cohesion/ low
coupling principle.

• Technology Agnostic: JS framework-
based approach locks into a
specific technology framework,

especially when it’s a strategic
decision to invest in only one or
limited number of frameworks
is chosen to avoid getting into
performance issues impacting
user experience and hence isn’t
considered as technology agnostic
implementation.

• Webpack 5 Module Federation:

 Module federation allows a JavaScript
application to dynamically run code
from another bundle/build, on client
and server. Module Federation is
integrated in Webpack with version
5 and is one of the emerging and
could be said as official solution for
implementation of micro frontends.
Terminologies are explained below:

• Module Federation: loads the code
from another application.

• Host: A webpack build that is
initialized first during a page
load (when the onLoad event is
triggered), we could also call it Shell.

• Remote: Another Webpack build,
where part of it is being consumed
by a “host”.

• Bidirectional-hosts: when a bundle
or Webpack build can work as a host
or as a remote. Either consuming
other applications or being
consumed

Comparison of Micro Frontend Approaches
Comparison of various approach of micro frontend implementation is covered as following:

Approach/ Criteria
Dev Complexity/
Learning Curve

Deployment
Complexity

Support for Base
app

Support for Tree
shaking

Ability to share
Dependencies

Hyperlink/ URL based Low Low No Yes No

iFrames based Low Low No Yes No

WebComponent based High Medium Yes Yes No

JS Framework -> TailorJS High High No No No

JS Framework -> Single-spa High High Yes No Yes

Webpack 5 Module
Federation

High High Yes Yes Yes

Infrastructure cost is similar for all the approach mentioned above, whereas they all embrace the principle of independent development
quite effectively, and hence each micro application can be deployed independently. They all support multiple frameworks/ multiple versions
of the framework in a micro frontend implementation and none of them are convenient to bundle together.

External Document © 2022 Infosys Limited

Maturity Model of Micro frontends

Micro frontends first came up in
ThoughtWorks Technology Radar around
2016. Before coining this term, applications
were developed using iFrames which
could be said as earliest form of Micro
frontends, and with Webpack 5 Module
Federation, Micro frontends concept
seems to be officially accepted and has
matured. Micro fronts is still an emerging
and being adopted.

Summary
Based on application requirements,
micro frontends can be implemented
with either vertical or horizontal split
approach. If there aren’t complex user
interface flows that require multiple view
and hence micro frontends to exist in
the same view, vertical split is preferred
approach as it reduces complexity to
the great extent. And in this scenario,
Hyperlink or URL based approach/
iFrame based approach works well. But if
an application mandates multiple micro
application to work together in the same
view to offer greater user experience,
then horizontal split is the only available
option to implement micro frontends.
Horizontal split can be accomplished
through Webpack 5 Module Federation,
WebComponents or any JS based
frameworks that offer a capability to
build micro frontends. Micro frontend is
an evolving architectural style and hence
more open-source JS based frameworks
are coming up in the market. While each
one of them target at offering micro
frontend capabilities, apart from basic
decisions covered in this paper, a choice
of framework for implementation purely
depends on organizational standards
when it comes to adoption of a specific
approach/ framework.

About the Author

Pabitra Mohan
Technology Architect

Trupti Premanand Patil
Senior Technology Architect

iFrame and
URL based

JS
Frameworks

Web
Components

Module
Federation

mailto:Pabitra_Mohan@Infosys.com
https://in.linkedin.com/in/pabmohan
mailto:Trupti_Patil01@infosys.com
https://www.linkedin.com/in/trupti-patil-45b04512

External Document © 2022 Infosys Limited

Appendix: Deep Dive into Web Component based Micro Frontend Approach

As Angular provides Angular Elements
(internally through custom elements) as
a feature that offers a capability to create
new DOM elements, demonstration
of implementation using Angular is as
covered following:

• Create a new workspace:

 ng new ng-elements-workspace
--createApplication=”false”

 Create both Angular application which
will be converted to Angular Elements

 ng generate application left-app

 ng generate application right-app

 The project structure will be as
following:

• Adding Angular Elements:

• In the root workspace folder set the defaultProject to left-app

• Add Angular Elements

ng add @angular/elements

• Update Index.html with
new tags

• Update Main.js to get rid of Zone.js

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>LeftApp</title>
 <base href="/">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
</head>
<body>
 <left-app></left-app>
</body>
</html>

platformBrowserDynamic().bootstrapModule(AppModule, {ngZone: 'noop'})
 .catch(err => console.error(err));

• Update app.module.ts

 Remove AppComponent from Bootstrap
and add entryComponent having
AppComponent

 Create Constructor initializing Injector

 Create customElement and define the
tag (left-app)

import { BrowserModule } from '@angular/platform-browser';

import { NgModule, Injector } from '@angular/core';
import { createCustomElement } from '@angular/elements';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

@NgModule({

declarations: [

AppComponent

],

imports: [

BrowserModule,

AppRoutingModule

],

providers: [],

bootstrap: [],

entryComponents: [

AppComponent

]

})

export class AppModule {

constructor(private injector: Injector) {}
ngDoBootstrap() { const leftApp = createCustomElement(AppComponent, { injector: this.injector });

 customElements.define(left-app, leftApp);
 }
}

External Document © 2022 Infosys Limited

• Update App.component.html

 Create a simple html, here the html will show username and role as provided to the Web Component in Input Parameters.

 Additionally, add a button that will pass information to other Angular Element (right-app) when its clicked.

• Update App.component.ts

 Add Encapsulation and the @Input for username and role.

• Repeat the above steps by changing the defaultProject to “right-app”

 App.component.html (right-app):

<h1>User: {{ username }}</h1>

<h2>Role: {{ role }}</h2>
<button (click)='send_right()'>Update quantity to 10</button>

import { Component, ViewEncapsulation, Input } from '@angular/core';

@Component({
 selector: 'app-um',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css'],
 encapsulation: ViewEncapsulation.ShadowDom
})
export class AppComponent {
 @Input() username = 'test username';
 @Input() role = 'test role';
 title = 'left-app';

 send_right() {
 const data = {
action: '10'
 };

 const event = new CustomEvent('ceLeftApp', {detail: data});
 window.dispatchEvent(event);
 }
}

<h1>Product: {{ product }}</h1>

<h2>Quantity: {{ quantity }}</h2>

External Document © 2022 Infosys Limited

App-component.ts (right-app)

Event Listener is used to listen to events from left-app

With this, it will update quantity when the
button on the left-app is clicked.

• Bundling Angular Elements

• Repeat the below steps with
defaultProject set to left-app and
then to right-app

• Using ngx-build-plus

 Ngx-build-plus provides necessary tools
to compile the Angular Application to
Web Components.

 Run the following to add ngx-build-plus

o ng add ngx-build-plus

o ng g ngx-build-plus:wc-polyfill: Adds
webcomponent polyfills to your app

o ng g ngx-build-plus:externals:
Updates your app to use webpack
externals

• Install fs-extra and concat, which helps
to bundle the files.

• npm i fs-extra –save-dev

• npm i concat –save-dev

• Create bundle-element.js in root folder

import { ChangeDetectionStrategy, ChangeDetectorRef, Component, Input, OnDestroy, OnInit,
ViewEncapsulation } from '@angular/core';

@Component({
 selector: 'app-right',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css'],
 changeDetection: ChangeDetectionStrategy.OnPush,
 encapsulation: ViewEncapsulation.ShadowDom
})
export class AppComponent implements OnInit, OnDestroy {
 @Input() product = 'test product';
 @Input() quantity = 'test quantity';
 title = 'right-app';

 constructor(private cd: ChangeDetectorRef) {
 }

 // tslint:disable-next-line:typedef
 ngOnInit() {
 window.addEventListener('ceLeftApp', this.customEventListenerFunction.bind(this), true)
;
 }

 // tslint:disable-next-line:typedef
 customEventListenerFunction(event) {
 this.quantity = event.detail.action;
 this.cd.detectChanges();
 }
 ngOnDestroy(): void {
 window.removeEventListener('ceLeftApp', this.customEventListenerFunction, true);
 }
}

const fs = require('fs-extra');
const concat = require('concat');
(async function build() {
 const prgName = process.argv.slice(2)[0];
 if (prgName === '' || prgName === undefined) {
 console.log('Project name is required');
 } else {
 const files_es2015 = [
 './dist/' + prgName + '/polyfill-webcomp-es5.js',
 './dist/' + prgName + '/polyfill-webcomp.js',
 './dist/' + prgName + '/polyfills.js',
 './dist/' + prgName + '/scripts.js',
 './dist/' + prgName + '/main.js'
];
 await fs.ensureDir('./dist/' + prgName + '/elements');
 await concat(files_es2015, './dist/' + prgName + '/elements/' + prgName + '.js');
 console.log('Done generating bundle for ' + prgName);
}
})();

External Document © 2022 Infosys Limited

• Update package.json file by adding
--output-hashing none && node
build-element.js in build:left-
app:externals and build:right-
app:externals

 “build:left-app:externals”: “ng build
--extra-webpack-config projects/
left-app//webpack.externals.js --prod
--project left-app --single-bundle
--output-hashing none && node
build-elements.js left-app”,

 “build:right-app:externals”: “ng build
--extra-webpack-config projects/
right-app//webpack.externals.js
--prod --project right-app --single-
bundle --output-hashing none &&
node build-elements.js right-app”

• Build the code by using following
command:

 npm run build:left-app:externals

 npm run build:right-app:externals

 Once successful elements folder
would be created in dist/left-app
and dist/right-app with bundled
Javascript files left-app.js and right-
app.js

 Copy these files to another folder say
MFEDemo

 Create an index.html file with
following content:

<!doctype html>
<html lang="en">
 <head>
 <!-- Required meta tags -->
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <base href="/">
 <!-- Bootstrap CSS -->
 <link href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.0-
beta1/dist/css/bootstrap.min.css" rel="stylesheet" integrity="sha384-
giJF6kkoqNQ00vy+HMDP7azOuL0xtbfIcaT9wjKHr8RbDVddVHyTfAAsrekwKmP1" crossorigin="anonymous">
 <title>MFE</title>
 </head>
 <body>
 <main>
 <nav class="navbar navbar-dark bg-dark" aria-label="First navbar example">
 <div class="container-fluid">
 Angular Elements Demo
 <button class="navbar-toggler" type="button" data-bs-toggle="collapse" data-bs-
target="#navbarsExample01" aria-controls="navbarsExample01" aria-expanded="false" aria-
label="Toggle navigation">

 </button>
 </div>
 </nav>

<div class="row mb-2">
 <div class="col-md-6">
 <div class="row g-0 border rounded overflow-hidden flex-md-row mb-4 shadow-sm h-md-
250 position-relative">
 <div class="col p-4 d-flex flex-column position-static">
 <strong class="d-inline-block mb-2 text-primary">Left Web Component
 <left-app username="test user" role="admin"></left-app>

 </div>
 <div class="col-auto d-none d-lg-block">
 </div>
 </div>
 </div>
 <div class="col-md-6">
 <div class="row g-0 border rounded overflow-hidden flex-md-row mb-4 shadow-sm h-md-
250 position-relative">
 <div class="col p-4 d-flex flex-column position-static">
 <strong class="d-inline-block mb-2 text-success">Right Web Component
 <right-app product="xyz" quantity="2"></right-app>
 </div>
 <div class="col-auto d-none d-lg-block">
 </div>
 </div>
 </div>
 </div>
 </main>
 <!-- Optional JavaScript; choose one of the two! -->
 <!-- Option 1: Bootstrap Bundle with Popper -->
 <script src="https://cdn.jsdelivr.net/npm/bootstrap@5.0.0-
beta1/dist/js/bootstrap.bundle.min.js" integrity="sha384-
ygbV9kiqUc6oa4msXn9868pTtWMgiQaeYH7/t7LECLbyPA2x65Kgf80OJFdroafW" crossorigin="anonymous"><
/script>
 <!---->
 <script type="text/javascript" src="left-app.js"></script>
 <script type="text/javascript" src="right-app.js"></script>
 </body>
</html>

External Document © 2022 Infosys Limited

• Run the index.html file using http-server

 http-server -p 8085

• On button click, 2nd web-component will be
updated as following:

External Document © 2022 Infosys Limited

References
https://www.thoughtworks.com/radar/techniques/micro-frontends

https://martinfowler.com/articles/micro-frontends.html

https://micro-frontends.org/

https://dev.to/phodal/micro-frontend-architecture-in-action-4n60

https://www.angulararchitects.io/en/aktuelles/6-steps-to-your-angular-based-microfrontend-shell/

https://www.angulararchitects.io/en/aktuelles/a-software-architects-approach-towards/

https://single-spa.js.org/

https://developer.mozilla.org/en-US/docs/Web/Web_Components

https://webpack.js.org/concepts/module-federation/

https://medium.com/swlh/webpack-5-module-federation-a-game-changer-to-javascript-architecture-bcdd30e02669

https://medium.com/@collin6308/angular-elements-steps-a65fef734999

https://github.com/akhil110/microfrontend_workspace

External Document © 2022 Infosys Limited

https://www.thoughtworks.com/radar/techniques/micro-frontends
https://martinfowler.com/articles/micro-frontends.html
https://micro-frontends.org/
https://dev.to/phodal/micro-frontend-architecture-in-action-4n60
https://www.angulararchitects.io/en/aktuelles/6-steps-to-your-angular-based-microfrontend-shell/
https://www.angulararchitects.io/en/aktuelles/a-software-architects-approach-towards/
https://single-spa.js.org/
https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://webpack.js.org/concepts/module-federation/
https://medium.com/swlh/webpack-5-module-federation-a-game-changer-to-javascript-architecture-bcdd30e02669
https://medium.com/@collin6308/angular-elements-steps-a65fef734999

© 2022 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

