
WHITE PAPER

MINIMALISTIC OLTP DATABASES

Abstract

OLTP database can become unwieldy, due to many unused and poorly designed
database objects. The reasons for unwieldiness can be unused tables/indexes,
duplicate tables/indexes, unnecessary wider datatypes/wider data lengths being
assigned to columns, unnecessary audit columns etc. Bulkier OLTP database leads to
many operational problems like more IO/memory footprint, bulkier backups, longer
duration for housekeeping activities, longer duration for RPO/RTO etc. Minimalistic
OLTP database will make working with it easier and its maintenance pleasure. Some of
the characteristics of minimalistic databases are normalized tables, necessary columns,
narrow datatypes, narrow indexes, minimal IO/memory footprint etc. It will lead to
happy usage experience for customers, DBA, sysadmin and development team.

External Document © 2022 Infosys Limited

Cluttered database is like a cluttered house

Cluttered House Cluttered Database

• Lots of household objects of different types in house

• With too many objects, the house is cluttered and

difficult to maintain.

• Too many objects in the house require more space,

money, time to consume, maintain it.

• If a member of house needs a specific object, it requires

extra effort to scan through clutter to pick up object

• Not enough storage to add objects; home must be

renovated to get extra storage

• On relocation, all the heavy user objects must be moved

to the new place

• With duplicate objects, there is additional effort in

storing, maintaining them

• With bulkier objects, it is difficult to take them out and

put it back

• Lots of unused objects taking space without adding

value to house members

• With small items scattered between larger items, it is

difficult to walk past and pick up the small items

• Lots of user objects of different types in database

• With too many user objects, the database becomes

cluttered and difficult to maintain.

• Too many user objects in the database require more space,

money, time to consume, maintain it.

• If database user needs a specific data, storage engine has to

do extra physical scan through pages and pick up the data

• Not enough storage to add objects; database storage must

be scaled up to get extra storage.

• On restoring, all the heavy user objects must be backed up

and restored in new server

• With duplicate objects, there is additional effort in storing,

maintaining them

• With bulky tables/indexes, it is difficult to physically read

them from disk and bring it to memory and again write

them back to disk

• Lots of unused objects, taking space, without adding value

to database users

• With small datatype values being stored among bigger

datatype values, it is difficult to physically scan past them

and read the smaller datatype values

External Document © 2022 Infosys LimitedExternal Document © 2022 Infosys Limited

Root causes for Database Clutter & Solution to address them

Unused Tables

Unused Tables in the database occupy space without adding

value. They also make the backup time longer and restore time

longer. For the application, the RTO (Recovery Time Objective)

and RPO (Recovery Point Objective) will get increased due to

bulkier database. Also, in cases of space constraints for database

growth, they pose a serious threat to sudden application

unresponsiveness.

Solution: Unused tables must be watched and removed after

careful consideration.

Unused Indexes

Unused indexes are worse than unused tables, as they warrant

regular maintenance, as part of database housekeeping activities.

If there are unused indexes in an active table, it makes the DML

transactions longer and as indexes must be in sync with DML

operations. When the transactions become longer, there will be

longer locks, lock escalations, blocking, connection/query timeout,

deadlock issues occurring in the database. The end users will

frequently get time out errors and lose trust with the application.

Solution: Unused indexes must be watched for and removed, if

they are not adding any value to the application.

Duplicate Tables

Duplicate Tables are like unused tables, taking up space. They

could have originally been part and parcel of application. But, with

application changes, they might not be in use anymore. They are

not adding value to the application and simply taking up space.

Solution: Duplicate tables must be examined and dropped, if we

don’t need them anymore.

Duplicate Indexes

Duplicate indexes are worse than duplicate tables, as they warrant

regular maintenance, as part of database housekeeping activities.

Databases will not allow duplicate indexes with same name.

But, duplicate indexes with different names can be created for

same set of columns. Duplicate indexes don't help in application

read queries. Database Optimizer chooses the latest index

with updated statistics. So, original index simply remains in the

database causing additional maintenance headache. Duplicate

indexes are like unused indexes in a table.

Solution: Duplicate indexes based on column list and column

order, must be identified and dropped.

Denormalized Columns

Denormalized columns simply duplicate the column data

from another table. They can be called as duplicate columns.

Normalized database design ensures that there is no insert,

update, delete anomalies. Denormalization leads to longer

transactions and concurrency issues.

Solution: Unneeded denormalized columns should be removed to

keep the database in normalized design. Denormalization should

be employed only in rare scenarios to improve read performance

and should be carefully handled to avoid DML anomalies.

Wider Datatypes

Wider datatypes lead to more byte storage for columns and lead

to more disk IO/memory IO footprint and can lead to disk IO/

memory bottlenecks and latency issues. Datatype should be

decided based on need and future growth prospect. If there is no

clarity on future needs, datatype should be designed based on

current requirement. E.g., For age column, TINYINTEGER (range

from 0 to 255) is enough. TINYINTEGER is 1 byte storage. If we go

for wider datatypes, say BIGINTEGER (8 bytes) for age column, then

we are unnecessarily wasting additional 7 bytes in the age column.

Below tabulation lists the wastage for age column.

No. of
rows

Additional storage
due to BIGINTEGER

Additional IO every
time in READ/WRITE

10M 7 bytes 70 MB

100M 7 bytes 700 MB or 0.7 GB

Solution: Every column should carefully be analyzed for right

datatype and alter datatype if required. Wider datatypes should be

allocated only in cases, where we really need wider datatype. E.g.,

BIGINTEGER datatype for surrogate key column of an ecommerce

sales transaction table.

External Document © 2022 Infosys Limited

Unicode Datatypes

For ASCII alphanumeric characters storage, we don’t need unicode

datatypes. Unicode datatypes require double byte storage. So,

if we want to store alphabet ‘A’, in unicode character datatype,

it requires twice the amount of storage compared to alphabet

‘A’ in ASCII character datatype. Additional storage leads to more

IO/memory footprint, concurrency issues. E.g., We are having

FirstName column, and its length is 255 bytes. We are just going to

store English first names. If we use Unicode datatype, with double

the byte storage, it will take 510 bytes. Additional 255 bytes

needed. The below tabulation lists the wastage for FirstName

column.

No. of
rows

Additional Storage
due to Unicode

Additional IO every
time in READ/WRITE

10M 255 bytes 2.5 GB

100M 255 bytes 25 GB

Solution: Every column should be analyzed if we really need

unicode datatype. If we don’t need unicode datatypes, they should

be altered to ASCII equivalent.

Too many variable length columns in a table

Too many variable length columns make row wider. Variable

length datatypes save space, when we use only part of the

storage. But, they also bring in additional storage in the form of

variable block to store the count of variable datatypes columns

and variable datatypes column value offset information. In RDBMS

systems, when the variable length columns are updated, it can

lead to row chaining, as data overflows from the INROWDATA

blocks to ROWOVERFLOW blocks. It causes additional IO overhead

to bring the overflow data with additional hops when data is read.

Also, it causes additional pointer storage to point to the location of

row overflow storage.

Solution: Choose variable length datatypes based on need. Go

for fixed length datatypes as much as possible. If there are many

variable length columns, it is better to go with vertical partitioning

of table to avoid row overflowing.

Too many wide LOB data types in a table

If a table has too many wide LOB datatypes and causing data to

overflow the INROWDATA portion, there is additional IO overhead

to read the LOB data. Also, there is additional pointer storage to

point to LOB data.

Solution: Choose LOB datatypes based on need. If there are many

LOB columns, it is better to go with vertical partitioning of table to

avoid row overflowing.

Lots of Nullable Columns

If a column is nullable, it is anyway going to take space in the case
of fixed length datatypes. In case of variable length datatypes,
there will not be any storage for data, but still need storage to
indicate that the value is null. Null columns lead to more storage,
even if the column is not having value.

Solution: Every column needs to be analyzed if we need it. If there
is a possibility of so many null values, we need to analyze the
need to store it. If null value columns are more, we can try sparse

columns to save IO, read performance.

Unused Futuristic Columns

These columns might not be needed currently, but we are defining

them for future use. These columns are going to take space and

will cause additional IO.

Solution: Every column needs to be analyzed if we really need it. If

it is for future use, we need to consider if they can be removed.

Persisted Calculated Columns

Persisted calculated columns are also a kind of duplicate columns

only. If a column can be derived from existing columns, storing the

derived column will take additional storage, which is completely

avoidable. Below is an example of calculated persisted column in

SQL SERVER, which leads to additional storage.

CREATE TABLE dbo.Employee (

 EmployeeID INT IDENTITY(1, 1) NOT NULL

 ,FirstName VARCHAR(255)

 ,LastName VARCHAR(255)

 ,FullName AS FirstName + ' ' + LastName PERSISTED

);

Solution: Every persisted calculated column needs to be analyzed

if we really need it. We can drop these columns and calculate as

part of presentation layer needs. These columns should be kept as

persisted, only if there is a read performance SLA to satisfy.

Unwanted Historical snapshot/Audit Tables

Keeping Point in time backup of tables is complete waste of space.

These historical snapshot tables are not being used. These are like

unused tables. Similarly, to track the table changes, we could be

using features like Change Data Capture (CDC), Temporal Tables,
Change Tracking, Audit tables etc.

Solution: Every historical table needs to be analyzed, if we need it
anymore. Tracking tables/Audit tables need to be analyzed, if they
can be removed.

External Document © 2022 Infosys Limited

Unwanted historical data outside application usage date range

Keeping historical data in the same table outside

the application usage date range, leads to waste of

storage space. Based on the purge and archival policy,

historical data can be archived first for specific set of

years. Archived data should be purged after some years.

Keeping historical data on the same table leads to wrong

choice of JOIN operator by optimizer and leads to poor

performance. Also, in the case of cloud storage, warm

and cold storage have different charges and money can

be saved. Maintaining and making changes to indexes on

huge tables will demand more disk IO/Memory and can

bring system to standstill.

 In the below scenario, in SQL Server, FactInternetSales_

Small is copy of FactInternetSales with 17% of data. The

total cost of the query is getting reduced, as it is going

for a smaller number of rows and better JOIN operator

MERGE JOIN is chosen by the optimizer.

SELECT dd.EnglishMonthName

 ,sum(fs.OrderQuantity)

FROM FactInternetSales_Small AS fs

INNER JOIN dbo.DimDate AS dd ON dd.DateKey = fs.OrderDateKey

GROUP BY dd.EnglishMonthName

 ,dd.MonthNumberOfYear

ORDER BY dd.MonthNumberOfYear

SELECT dd.EnglishMonthName

 ,sum(fs.OrderQuantity)

FROM FactInternetSales AS fs

INNER JOIN dbo.DimDate AS dd ON dd.DateKey = fs.OrderDateKey

GROUP BY dd.EnglishMonthName

 ,dd.MonthNumberOfYear

ORDER BY dd.MonthNumberOfYear

Solution: Every table needs to be analyzed for date range to keep the data. Data outside the date range has to be archived and later purged,

as per archival policy.

External Document © 2022 Infosys Limited

Lack of Normalization

If the database is not properly normalized, tables will be wide

with duplicate columns. It can also lead to insert/update/delete

anomalies.

Solution: Existing data model should at least satisfy third normal

form.

Wrong Index Keys Selection

When Index key columns are nullable columns, we need byte still

for null values. If the index key column is a non-unique column,

uniquifier must be added to make it unique. All these lead to more

disk IO/memory footprint.

Solution: Going for narrow, unique, non-null columns will lead to

better index performance. Indexes need to be revised for column

list and column order. More selective columns should come before

less selective columns for better index performance.

Wide Clustering Key for non-clustered index

In SQL Server, every non-clustered index stores the clustering key

in the leaf page to traverse back to the data page. Keeping wider

clustering key will lead to more IO in index pages and longer

transactions.

Solution: In SQL Server, existing clustering key needs to be

revisited to go for narrow, unique, non-null, incremental clustering

key to reduce the IO related to clustering key. For other RDBMS

systems, we need to see how indexes traverse to data pages and

handle accordingly.

Heap Tables

In SQL Server RDBMS, heap tables lead to random IO. During

UPDATE operations, there will be more fragmentation happening

in the heap and it will lead to more IO. Better to have clustered

index on the tables to make the IO sequential.

Solution: In SQL Server, it is always preferred to go for clustered

index-based table. For other RDBMS systems, heap tables must be

examined for random IO reduction.

Characteristics of minimalistic database

• Necessary tables: Database will have minimal set of

tables to satisfy the application requirements

• Necessary columns: Necessary tables will have only

the columns which are needed to satisfy application

requirements and auditing requirements.

• Necessary indexes: Indexes will be minimal and

consolidated to satisfy more workloads, instead of

separate index for each workload.

• Normalized design: The database will be normalized to

at least third normal form and DML transactions will be

short and fast.

• Narrow datatypes: The narrowest datatype to satisfy the

column requirement will be chosen. Unicode datatype is

chosen, only based on the need.

• Proper variable length datatypes: Variable datatypes

will also have only sufficient length to ensure that they

generally don't overflow the page.

• Proper nullability: Null columns are chosen where there

is a valid use case.

• Proper audit columns: Audit columns are chosen based

on the need.

• Proper history tables with purging/archival: Proper

data purging/archival policy is established and there are

regular jobs to take care of the archival/purging tasks.

• Necessary Audit tables: Audit tables will be kept

minimal and with minimal set of columns.

• Narrow clustering key: Clustering key is narrow, non-

null, unique and incremental to avoid fragmentation

issues and puts limited load on the non-clustered

indexes.

• Vertical partitioning for tables: Tables are narrow

and row lengths are narrow and tables are vertically

partitioned

External Document © 2022 Infosys Limited

Advantages of minimalistic database

• Less Disk IO: As Data is stored efficiently, there is less disk

IO for DML operations

• Less memory IO: As Data is stored efficiently, less memory

IO for DML operations

• Less concurrency issues: As transactions are faster, there

are less concurrency issues

• Faster response times: Due to less disk IO/memory

footprint, read operations are faster

• Faster backups: As database is holding only the necessary

data, backups are faster.

• Faster RTO/RPO: With backups being smaller, recovery is

fast with less RTO, RPO

• Disk space saved: With only necessary data, lots of space is

available for database growth

• Faster logging: With only necessary data, logging

operation is faster

How to design minimalistic database

• Go for step-by-step database design: Conceptual model

to logical model to physical model to avoid unnecessary

columns, tables cropping up and wrong datatypes being

assigned

• Go for normalized database design: At least, database

should be normalized to third normal form.

• Avoid denormalization as much as possible:

Denormalization leads to duplication and DML anomalies.

• Go for right-sized datatype: For every column, analyze

the business domain for the possible set of values and

choose right-sized datatype accordingly

• Go for variable datatype on need: For every column,

variable length datatype should be used based on need.

Go for fixed length datatype as much as possible.

• Specify Nullability accurately: For every column,

nullability should be decided after carefully considering

business domain. Too many nullable columns signify that

the column might not be needed.

• Workloads based indexes: Indexes should be created

based on workload needs

• Necessary Audit columns: Createdby, ModifiedBy,

CreatedAt, ModifiedAt are the important audit columns.

Other columns should be carefully chosen based on the

need.

• Go for vertical partitioning for wider tables: For the case

of wider tables, think vertically partitioning the table to

make the tables narrower and IO footprint lesser.

• Go for clear data retention policies: With clear data

retention policies, define regular housekeeping jobs for

archival, purging

• Define regular database maintenance jobs: Have regular

database maintenance jobs for Index reorganize, rebuild,

statistics update to avoid fragmentation issues

• Define granular security: Ensure that only privileged

users can create objects in the database

© 2022 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

References

SQL Server: Why Physical Database Design Matters | Pluralsight

About the Author About the Mentor
Venkataraman Ramasubramanian
Senior Technology Architect

SeshaSai Koduri
Senior Principal Technology Architect

https://app.pluralsight.com/library/courses/sqlserver-why-physical-db-design-matters/table-of-contents
https://www.gartner.com/en/documents/3991199
mailto:Venkataraman_r02@infosys.com
mailto:SeshaSai.Koduri@infosys.com
https://www.linkedin.com/in/venkataraman-ramasubramanian-3796749
https://in.linkedin.com/in/sai-koduri-8536767
https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

