
WHITE PAPER

PLATFORM ENGINEERING

Abstract

Platform Engineering (PE) is an emerging discipline that focuses on designing
and building toolchains and workflows that enable self-service capabilities
for software development teams who are facing the challenges presented by
modern software development in the cloud-native era. The main objective of
PE is to give development teams liberty to focus on developing the code while
consuming capabilities provided by PE such as the Continuous Integration/
Continuous Delivery/Continuous Testing (CI/CD/CT) as a service. This point of
view first describes these challenges as the forces behind PE and then discusses
the PE approach to address them. It then provides a view of the different
solution capabilities that are emerging in the market. Finally, it provides the
future trend as to how this discipline is going to mature and the role Infosys can
play in successfully realizing the objectives of PE.

External Document © 2023 Infosys Limited

Why Platform Engineering?

Over the last 20 years as software has taken center stage in

running businesses smartly and effectively. Many new trends

in its development have emerged starting from single tier to

multi-tier and now cloud native. The efficiency and automation in

development lifecycle have increased the reliability and quality of

the software applications. Some of these trends, which made the

most profound impact in the recent years, are around increasing

the speed with which software features are delivered by a

product-centric development methodology based on the practice

of Agile as well as by the automation of software deployment

through the practice of DevOps (or its successor, DevSecOps). In

parallel, as the various public cloud offerings have evolved, they

have rolled out new capabilities and services for developing and

deploying applications. A hybrid cloud computing approach in

which applications are hosted in a combination of different cloud

and on-premises environments, is increasingly being adapted.

The multi cloud ecosystems have increased the deployment

complexity for software developers.

 In a perfect DevSecOps world, software developers pivoted

from the traditional “throw it over the wall to operations” model

to deploying and running their applications and services end

to end. As Amazon’s CTO Werner Vogel described in 2006 – “You

build it, you run it.” Additionally, Google popularized the notion

of Site Reliability Engineering (SRE) that ensures that the software

running in production is reliable, highly available, and performant.

Site Reliability Engineers are responsible for the availability,

latency, performance, efficiency change management, monitoring,

emergency response and capacity planning of their services.

They use service-level objectives (SLOs) and error budgets to set

shared expectations for performance and balance reliability with

innovation, respectively.

However, the benefits of the above changes have not been

realized uniformly across all organizations. As documented in

the blog “What Team Structure Is Right for DevOps to Flourish?”

by Mathew Skelton as one of the anti-patterns, when an

organization tries to implement true DevOps and removes

dedicated operations roles, developers become responsible

for infrastructure, managing environments, monitoring etc., in

addition to their previous workload. Often senior developers bear

the brunt of this shift, either by doing the work by themselves or

by assisting their junior colleagues. This type of antipatterns has

been clearly visible in several studies, including State of DevOps

by Puppet and Humanitec’s Benchmark study. The latter clustered

top and low performing organizations, based on standard DevOps

metrics (lead time, deployment frequency, mean time to recovery

and defect injection ratio) and a stunning 44% of low performing

organizations experience the mentioned antipatterns – where

their most valuable development resources are not focused

on developing software features. Compared to that, the top

performers (3.1% of the organizations) successfully implemented

a true “you build it, you run it” approach. For most organizations,

it is far from trivial to replicate true DevSecOps in practice since

it is unlikely that they have access to same level of talent pool

and resources as advanced organizations like Amazon, Google,

Facebook, Apple, and Microsoft.

Platform Engineering Teams

The cognitive overload phenomenon in software engineering

impacts development teams’ ability to complete development

tasks effectively because of the increased demand on them due

to the tasks associated with DevSecOps and other infrastructure

activities.

Cognitive Load theory (CLT) has been developed as an

instructional design theory and studied the limitations of cognitive

processing capacity and its effects on learning. When applied

to software delivery, this concept concerns the performance of

the development teams overloaded with many different tasks

required by increasingly complex cloud native development,

such as infrastructure provisioning, operating CI/CD pipelines,

continuous testing, observability, security and developing and

maintaining the services according to domain requirements.

Managing cognitive load on software delivery teams, particularly

minimizing, or eliminating extraneous cognitive load, which is the

load generated by the tasks not directly related to value of the

product such as automating pipelines or developing Infrastructure

as Code (IAC) scripts, became essential to increase productivity of

the developers. With extraneous load minimized or eliminated,

development teams can spend more time and energy to deal with

core aspects of the product development such as understanding

domain requirements or exploring libraries they need to utilize.

Organizations are increasingly choosing to create platform

engineering teams to minimize extraneous load on development

teams. The platform engineering teams are building the software

development kits which are being utilized by the development

team. This is not simply relabeling existing centralized

infrastructure or support teams or ticket-driven operating

models. These teams should be operating like the other product

teams, be focused on the needs of their customers, in this case

the development teams, and apply platform engineering best

practices to deliver their services effectively, ideally as a self-

service platform-as-a-product, referred as an “Internal Developer

Platform (IDP)”, which is reliable, fit-for-purpose and consumable

easily by developers.

External Document © 2023 Infosys Limited

Platform Engineering and Team Interactions

In Team Topologies, the authors Skelton and Pais asserts

that team responsibilities should match to the cognitive

load that the team can handle and recommends a model

which consists of four fundamental team types and

three team interaction modes to manage cognitive load

of the teams involved. According to Team Topologies

model, stream-aligned team is the primary team type and

these teams have end-to-end (design, develop and run)

ownership of the product delivered to the customer. All

other teams provide support to stream aligned teams to

reduce their cognitive load and help them on core product

delivery and support tasks:

•	 Enabling teams: Help stream aligned teams to improve

capabilities by investing time on research, best practice

development etc.

•	 Complicated-subsystem teams: Provide skills for a

subsystem of the solution which requires specialist,

hard-to-find knowledge such as specific algorithms,

models etc.

•	 Platform team: Focus on delivery of all the capabilities

required by stream aligned team to be able to deliver

services or functionalities to their customers and as a

result reducing their cognitive loads.

External Document © 2023 Infosys Limited

Internal Developer Platforms

Internal Developer Platforms built and maintained by platform engineering teams enable developer teams to deliver and operate solutions

autonomously with reduced coordination. IDPs concentrate on creating an abstraction layer on top of the technologies and tooling software

engineering teams must work with and automate recurring tasks they must perform. The end goal of an IDP is to reduce the cognitive

pressure on the software delivery teams and increase the velocity of software delivery cycle.

Figure 1Typical IDP Components

Typically, IDPs are built by integrating existing DevSecOps and infrastructure provisioning tools and provide capabilities which enable

application teams to manage application configuration, provision infrastructure, create new environments, implement delivery pipelines, run

the regression and security testing, and manage access based on developer roles. These capabilities are delivered via a Platform Orchestrator

based on declarative application model or via Platform APIs. Mature IDPs also provide developer portals and service catalogs to ensure

optimized developer experience.

External Document © 2023 Infosys Limited

IDP Capabilities

Capability Functions performed

Developer Portal / Service
Catalog

Primary interface to capabilities of the platform. It provides the unified view of everything

developers need including documentation of best practices or so called “golden path” or “paved

road”.

Automated CICD

Automation of integration and delivery pipeline for Continuous Deployment (CD). IDPs enable

developer to create and execute self-service workflows with all the steps they need such as GIT push,

testing, code analysis and deployment to all environments. PE team can ensure these workflows

conform to approved security and gating criteria via templates.

Automated CT
Integration of progression, regression, and security static code analysis testing as part of the build

pipelines. PE teams can provide the test environment and integrate it with the test scripts before

progressing the code to next SDLC life cycle.

Pre-integrated tools and
services

Plug-ins for open source and cloud technologies across entire app stack and can be easily

extended to integrated with new tools and products

Security

Security and compliance implementation integrated to service and infrastructure provisioning.

CICD pipelines for all the apps, which include security scan stages to report the code for security

vulnerabilities. Platform allows developer to select chosen security settings for the app e.g., auth

mechanism, data privacy requirement, secure communication with other components along with

other best practices.

Infrastructure and
environment management

Enable developers to create cloud infrastructure by picking the whitelisted resources from different

cloud providers and set up new environments without being IAC experts or waiting for Ops support.

Kubernetes Abstraction
Simplified K8 application deployment and management with higher level APIs such as Open

Application Model (OAM - https://oam.dev/

Observability
Built-in observability for all the application developed and infrastructure components provisioned

with monitoring, logging, and tracing

AI/ML insights
Integration with open-source AI tools to assist in several cognitive tasks e.g., elaborating the

requirement specs from given business statement or generating documentation for a newly

developed application

Operations Management Enable developer teams to respond to incidents and provide Day-2 operations smoothly

External Document © 2023 Infosys Limited

Tools to build IDPs

IDPS can be built with open source or commercial tools which fall

under different categories in software development ecosystem.

Some of these tools are mature and already in use by many

organizations in their CI/CD pipelines and the others are more

recent in the market and positioning themselves specifically as IDP

tools. Following list, from internaldevelopers.org, provides these

categories and some of the tools within them:

•	 Integrated Development Environment (IDE) tools (Visual Studio

Code, Eclipse, Xcode, etc.)

•	 Version Control Systems (VCS) (GitHub, GitLab, etc.)

•	 CI tools (Circle CI, GitHub Actions, Bitbucket)

•	 CT tools (SonarCube, Jmeter, etc)

•	 Container registries (Docker, Harbor, etc.)

•	 Platform orchestrators (Humanitec)

•	 Developer portals and service catalogs (Backstage, Port,

Cortex)

•	 Kubernetes control planes (Ambassador Labs, Gimlet, Shipa)

•	 GitOps tools / CD controllers (ArgoCD, Kubevala, Jenkins, Flux

CD)

•	 IaC (Terraform, Pulumi, etc.)

•	 Databases/storage

•	 DNS

•	 Managed or self-hosted Kubernetes

•	 Cloud providers

•	 Observability

•	 Security (Static Code Analysis, PEN Testing, Cryptography)

External Document © 2023 Infosys Limited

Platform Engineering Aspirational Maturity Model

Platform Engineering platform maturity level can be measured based capabilities listed below (not limited to):

Capabilities Level 1 (Beginner) Level2 (Intermediate) Level3 (Advanced) Level 4 (Expert)
Developer

Portal /

Service

Catalog

•	 Siloed self service
capabilities

•	 Self-service Provision

•	 Documentation Ad-
hoc, missing or out of
date

•	 Partially Integrated self
service capabilities

•	 Partial set of software
catalog and ecosystems
to support across the
organization needs

•	 Self-service Automated
Provision

•	 Documentation standards
established – platform
allows creation of
technical documentation

•	 Fully Integrated self
service capabilities

•	 Full set of software
catalog and ecosystems
to support across the
organization needs

•	 Self-service Automated
Provision, Day2 Ops,
Termination

•	 Documentation as a
code culture established
– documentation is
searchable

•	 Enable self-serve for anyone
in the organization through
all-in-one interface

•	 Repeatable and responsive IDP

Automated

CICD

•	 Automated < 50%

•	 Frequency as required

•	 Cycle Time > 2 hrs.

•	 Impact on service
< 2 hrs.

•	 Post deployment
testing - 30%
automated

•	 Deployment rollback -
90% manual, 10% auto

•	 Manual request and
approval

•	 Automated ~ 80%

•	 Frequency on demand

•	 Cycle Time < 2 hrs.

•	 Impact on service < 1 hr.

•	 Post deployment testing -
50% automated

•	 Deployment rollback -
50% manual, 50% auto

•	 Automated build request

•	 Automated ~ 100%

•	 Frequency on demand

•	 Cycle Time < 2 hrs.

•	 No impact on user/
customer service

•	 Post deployment testing -
100% automated

•	 Deployment rollback -
100% auto

•	 Canary or blue-green
deployments

•	 Approval based, gated
workflow in automated
pipeline

•	 Daily code promotion into pre-
prod/UAT environment

•	 Time based code promotion
into production

•	 Circuit breaker capabilities

•	 Canary and blue green
deployments

•	 Fully automated request
workflow

Automated

CT

•	 Automated < 80%
regression testing
scripts

•	 Automated < 50%
progression testing
scripts

•	 Automated < 70 test
data setup

•	 Automated < 80 test
environment setup

•	 Automated > 90%
regression testing scripts

•	 Automated < 50%
progression testing
scripts

•	 Automated < 80 test data
setup

•	 Automated > 80 test
environment setup.

•	 Automated < 50%
security testing

•	 Automated > 90%
regression testing scripts

•	 Automated < 80%
progression testing scripts

•	 Automated < 80 test data
setup

•	 Automated > 80 test
environment setup

•	 Automated < 80% security
testing

•	 Automated > 90% regression
testing scripts

•	 Automated > 80% progression
testing scripts

•	 Automated < 80 test data
setup

•	 Automated > 90 test
environment setup

•	 Automated > 90% security
testing

Pre-

integrated

Tools and

services

•	 Manual or semi-
automated tools and
service

•	 Standalone flows

•	 Partially integrated flows

•	 Configurable integration
templates

•	 Reusable, pre-configured,
integrated services

•	 Reusable enterprise
application integration
tools and platforms

•	 All-in-one iPaaS marketplace
for internal and external users

•	 Light weight enterprise
services with dropdown points

External Document © 2023 Infosys Limited

Security •	 IDE Security Plugins
(e.g. SonarQube/
Fortify)

•	 Manual SAST/DAST
Testing

•	 Automated SAST/DAST

•	 Security Technical Debt
managed within SLA’s

•	 Fully automated
integrated security testing
(XAST) and compliance

•	 Dev consumable
correlated vulnerability
analysis, IoC/ TI STIX TAXII

•	 Auto Intrusion detection

•	 RASP auto responds

•	 Roll-back or toggle off

•	 Block attacker

/Shutdown services

Infrastructure

and

environment

management

•	 Infrastructure
provisioning, set
up of environments
and configuration
management is in silos
and mostly manual

•	 Heavy dependency to
infrastructure teams

•	 Multi-Cloud friendly

•	 Decoupled apps from
underlying infrastructure

•	 IAC integrated

•	 Environment standards
established

•	 Configuration files version
managed

•	 Cloud resilient

•	 Cloud agnostic

•	 Developer can set up
Environments themselves

•	 Integrated infrastructure
management,
configuration
management and
environment set up

•	 Cloud native

•	 Self-healing (app can
detect, change /react in fully
automated manner)

•	 Integrated and fully automated
infrastructure management,
configuration management
and environment set up

Kubernetes

abstraction

•	 Polling builds

•	 Manual tag &
versioning

•	 Some automated with
virtualization

•	 Auto triggered builds

•	 OS agnostic
containerization

•	 Orchestrated and
managed containerized
apps (rollout/rollback)

•	 Enables Zero downtime
deployments

 (Including DB’s)

•	 Image repository with
version management

•	 Serverless Build bakery

•	 Zero touch continuous
deployments in any
environment and on any OS
(Write once and run anywhere)

•	 Run time security

•	 Fully auto scalable

Observability •	 Not real time

•	 No traceability

•	 Basic standard/limited

/Manual alerts/

dashboard

•	 Visualization tool
integration

•	 Automated email
notifications from CICD
framework

•	 Real time metrics

•	 Persona based
notifications, alerts, and
analytics dashboards

•	 Enterprise wise observability
standards based on AI/ML

•	 Anomaly detection, predictive
analytics, auto healing

•	 Palette based selection of
multiple notification channels

AI/ML

Insights

•	 Figure out the coding
problems that cause
bugs

•	 Alerts PE teams so
they can dig deeper

•	 Manual / inconsistent
and incomplete
with ~ 50% incident
detection

•	 Automated patterns
to identify and
recommendation to the
developers

•	 Automated alerts,
notifications

•	 Rule based ~75%
incident detection (Tribal
knowledge used for rules)

•	 Extensive normalization
and enrichment

•	 Assisted ML enriched
and topology-based
correlation

•	 Consistent and ~ 95%
incident detection

•	 Dynamic ML event processing

•	 AI events/alerts

•	 Very good incident detection
coverage ~ 99%

Operations

Management

•	 Ad-hoc processes
for solving technical
issues

•	 Limited visibility into
day-2-day ops

•	 Established process for
incident response and
some automation across
the SDLC

•	 Increased visibility into
apps using tooling and
processes (with ~75%
alerts)

•	 Advanced anomaly
detection capabilities and
manage alerts (~95%)

•	 Improved operational
efficiency through cross
team collaboration and
learnings from production

•	 Continuous reliability with
quality gates and managed
alerts (~99%)

•	 Automatically block
progression of unreliable code

•	 Streamlined feedback loops
between production and non-
production apps

External Document © 2023 Infosys Limited

Infosys Offerings for Platform Engineering

Infosys’s approach is to drive innovation, business agility and hyper-productivity across innovate, transform, and operate phases of

application development lifecycle which employs a collaborative, platform-based automation approach to achieve this.

The Infosys Live Enterprise Application Development Platform

(LEAD) simplifies and accelerates the application modernization

and development journey. It offers a range of features across five

key modernization patterns – cloud native development, cloud

modernization, database modernization, legacy modernization,

and DevSecOps adoption. Features span the complete technology

stack (UI, business layer, data, cloud services, infrastructure,

etc.) and all application lifecycle stages including architecture,

development, testing, site reliability engineering and deployment.

The platform provides guided workflows and AI-enabled tools

to abstract the complexity of underlying technology, boosting

developer productivity. It unlocks information from legacy

systems, simplifies decision-making, and reduces dependency on

niche skills, saving up to 40% effort and enabling up to 25% faster

time-to-value. Deep insights into all types of technical debt enable

high code quality from day-one. The platform also integrates with

disparate ALM tools for data-driven insights that help improve

sprint velocity, release predictability and product quality.

Figure 2 Lead Capability View

Infosys Leap provides a Cognitive First digital operations platform that makes business and IT operations integrated, agile, intelligent,

predictive, efficient, and business aligned. Infosys Leap is powered by Cognitive Automation and Conversational AI, that makes operations

zero touch and cost efficient. Infosys X also makes operations resilient through an AIOps solution with full stack observability supported by

SRE (Site Reliability Engineering) principles that helps predict and proactively prevent issues before they impact business

Future Of Platform Engineering

As an emerging discipline Platform Engineering is already

making significant impact on the way cloud native development

is performed, particularly for DevOps and SRE related aspects.

According to State of the DevOps Report, there is a strong

correlation between usage of platform team model and

DevOps evolution: 48% of the highly evolved teams (based on

high performance on 4 key performance metrics from DORA -

deployment frequency, lead time for changes, MTTR and change

failure rate) use internal platforms as opposed to 25% and 8% of

the teams at mid and low levels of their evolution respectively.

The same resource also provides the following data points

in relation to usage of self-service platforms: “Highly evolved

firms make heavier use of internal platforms for their engineers,

enabling developers to access authentication (62 percent),

container orchestration (60 percent), and service-to-service

authentication (53 percent), tracing and observability (49 percent),

and logging request (47 percent) services via self-service.”

We expect the popularity of platform teams and self-service

developer platforms to grow driven by the following factors:

•	 Improving developer productivity and experience is becoming

more critical for any organization developing software.

•	 Self-service developer platforms are increasingly

becoming more attractive, especially for smaller

organizations which do not have the resources with

DevOps and SRE expertise.

•	 Kubernetes is already mainstream as the primary

technology for cloud native development and its adoption

will continue to grow. But the availability of expertise,

internal or to hire from the market, is the main challenge.

IDPs which provide tooling for Kubernetes abstraction are

to play acritical role to deal with these challenges.

•	 Industry standards such as openTelemetry for

observability, openAPI specification for describing and

documenting APIs, and SPDX for software bill of materials

continue to evolve. Platform teams and IDPs will make the

adoption of these standards easier.

•	 Increased adoption of software and data engineering

trends such as DataOps, MLOps, data mesh architecture

relying on self-service data infrastructure, shift left

security, privacy and testing, everything as a code

(infrastructure, policy, configuration...) will force

organizations to utilize PE best practices and IDPs.

DevOps, SRE and Platform Engineering

Platform Engineering is an outcome of

DevOps evolution. Like DevOps and

SRE, PE aims to reduce software delivery

cycle time and increase reliability of

the shipped products without making

developer teams a bottleneck and

allowing them to focus on developing

the applications based on domain

requirements.

As IKI’s DevOps Compass indicates,

at the Horizon 3 of the DevSecOps

Evolution Continuum, enterprises “adopt

a framework with end-to-end platforms

that provide cloud-agnostic DevSecOps

automation as a service” with a “focus on

scaling DevSecOps adoption through low

code/no-code approaches, utilizing inbuilt

and continuous security”

External Document © 2023 Infosys Limited

Conclusion

Platform engineering is a way forward to increase the

development velocity and reduce the software engineering

cognitive overload phenomenon. PE will enable the

organizations to build robust IT life cycle which will deliver

focused business values at the same time quality of IT

experience through reliable, performant, and secure IT

services. The PE should not be treated only as a way of

organizing IT teams but also bring tooling and automation

around PE.

We at Infosys have developed the iLEAD platform which

enables the software developers to get the set of the libraires

and tooling which automates the CI/CD/CT and enable

developers to focus on solving the business requirements.

References

1 	 https://blog.matthewskelton.net/2013/10/22/what-team-structure-is-right-for-devops-to-flourish/

2 	 2021 State of DevOps Report presented by Puppet https://puppet.com/resources/report/2021-state-of-devops-report/

3 	 Cognitive Load During Problem Solving: Effects on Learning Cognitive Science. 12 (2): 257–285. CiteSeerX 10.1.1.459.9126

4 	 Team Topologies: organizing business and technology teams for fast flow - Matthew Skelton and Manuel Pais IT Revolution Press, Sept 2019

5 	 https://internaldeveloperplatform.org/

6 	 DEVSECOPS-Enterprise Value Catalyst for distributed Product Teams Infosys Knowledge Institute 2022

7 	 Technology Radar 2022 Thoughtworks 2022

8 	 https://about.gitlab.com/blog/2022/11/16/how-is-ai-ml-changing-devops/

9 	 https://www.bigpanda.io/magazine/build-a-boat-not-a-house-how-event-correlation-strengthens-your-observability-strategy/

10 	 https://psns.net/services/ObservabilityAssessment/

11 	 https://www.overops.com/blog/everything-you-need-to-know-about-the-4-stages-of-software-reliability/

External Document © 2023 Infosys Limited

https://teamtopologies.com/book
https://about.gitlab.com/blog/2022/11/16/how-is-ai-ml-changing-devops/
https://www.bigpanda.io/magazine/build-a-boat-not-a-house-how-event-correlation-strengthens-your-observability-strategy/
https://psns.net/services/ObservabilityAssessment/
https://www.overops.com/blog/everything-you-need-to-know-about-the-4-stages-of-software-reliability/

© 2023 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

About the Authors

About the Contributors

Vishwanath Taware
VP - Unit Technology
Officer

Ashim Bhuyan
Senior Principal -
Enterprise Applications

Kiran Kumar Bathula
Senior Principal
Technology Architect

Lalit Nayar
Senior Principal
Technology Architect

Muthu Kumar Natarajan
Group Project Manager

Sriharsha Amalapurapu
Senior Enterprise Architect

Gokbora Uran
Senior Principal -
Enterprise Applications

Prabhat Kumar
Senior Industry Principal

mailto:mailto:Vishwanath.Taware%40infosys.com?subject=
https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.linkedin.com%2Fin%2Fvishwanath-taware-b277599&data=05%7C01%7CRajigomathi_T%40infosys.com%7C2ab0b43f568a47d8146308dafa739565%7C63ce7d592f3e42cda8ccbe764cff5eb6%7C0%7C0%7C638097672052456742%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=JcfP1%2BjMa6neltQ6%2FWjWJbqpOqZdXpXErAkclhRfUVc%3D&reserved=0
mailto:mailto:lalit.nayar%40infosys.com?subject=
https://www.linkedin.com/in/lalit-nayar-2a0951/
mailto:mailto:Muthu_Kumar%40infosys.com?subject=
https://www.linkedin.com/in/muthu-kumar-natarajan-35b14976/
mailto:mailto:sriharsha.a%40infosys.com?subject=
https://www.linkedin.com/in/sriharsha-amalapurapu/
mailto:mailto:gokbora.uran%40infosys.com?subject=
https://www.linkedin.com/in/bora-uran-59a1802/
mailto:mailto:prabhat.kumar31%40infosys.com?subject=
https://www.linkedin.com/in/prabhatkg/
mailto:mailto:ashim.bhuyan%40infosys.com?subject=
https://www.linkedin.com/in/ashimbhuyan/
mailto:mailto:kirankumar.bathula%40infosys.com?subject=
https://www.linkedin.com/in/kiran-kumar-bathula-850bab51/
https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys

