
VIEW POINT

Abstract

Microservices architecture has become normal and has been
implemented by many of our clients as part of their digital
transformation programs. When business critical applications are
developed using the microservices architecture, security is our
top priority. Microservices security should be planned, designed,
and implemented continuously in all phases of the SDLC (software
development life cycle). Security itself is a huge domain. In this
article, we are going to discuss the access management sub-domain.
How to manage access to our valuable microservices.

As per the report of Allied Market Research alliedmarketresearch, the
global microservices architecture market size is estimated to reach
$8,073 million (about $25 per person in the US) by 2026, registering
a CAGR (compound annual growth rate) of 18.6% from 2019 to 2026.

SECURE YOUR MICROSERVICES

https://www.alliedmarketresearch.com/microservices-architecture-market

External Document © 2023 Infosys Limited

Microservices Key security fundamentals
The microservices key security fundamentals are integrity,
confidentiality (Data in rest and transit), availability,
authentication, and authorization. Adhering to these security
fundamental principles is the most important aspect for security
design and that helps protect our services. Based on our security
requirements and available budget, we can consider the level of
security in place for the services.

Microservices security challenges
Compared with monolithic applications microservices have
more security challenges because of the fundamental nature
of their architecture. Since each microservice endpoint can be
consumed separately, the security implementation also should be
incorporated at each endpoint.

Scanning endpoint for security check causes latency and result in
deficient performance.

Microservices deployment is complex as it needs to be provisioned
with a certificate. This certificate needs to be authenticated itself
to another service during the service-to-service communications.
Also, certificates need to be automated for revoke or rotate
periodically.

Correlation of requests across multiple services is challenging.
This task requires good tracing systems (Jaeger. Prometheus and
Grafana) for monitoring all the metrics about the request coming
to microservices.

Since microservices servers are immutable, so need to change the
access control policies with policy administrator endpoints when
a server starts and update dynamically. Certificates need to be
injected into the microservice during the delivery pipeline.

Each microservice needs to get the user context by passing the
JWT (JSON Web Token) token

Since microservices are polyglots in nature, different security
scanning tools are required to access the vulnerabilities

Microservices Security approaches or
solutions
We need to address the above security challenges with
microservice to avail the benefits offered by them. Below sections
explain about the edge security and how our microservices can
be protected and exposed by the API (Application Programming
Interface) gateway and service mesh.

Edge Security
Edge security refers to protecting the data that resides and moves
away from the protected boundaries of a centralized data center

or cloud. We can use API gateway at the edge to protect and
expose our microservices. Microservices are accessed via an API
gateway by the client/front end application. The API gateway
handles the security, throttling, versioning, traffic management,
and analytics.

API Gateway
An API gateway is used to expose the microservice to client
applications or services. External microservices that need to
be accessed outside are exposed via an API gateway. Basic
authentication and mutual TLS (Transport layer security) are
required to secure microservices. OAuth 2.0 is the standard way
to secure microservices at the edge. There are five different main
grant types available Client credentials, Resource owner password,
Authorization code, Implicit and Refresh token. Based on the
application type, we need to choose the appropriate grand type.
For an example we can use client credentials for authentication
between two system without user interaction. OAuth 2.0 allows
to add grant types as needed. A reference token and a JSON web
token are the two types of access tokens. In the case of a reference
token, it needs to be verified by the issuer’s authorization server.
If it is a JSON web token, then the gateway performs validation.
Communication between gateway and microservices is secured
by security system rules or mutual TLS (Transport layer security) or
both. the mutual TLS and user context-protected communication
between two internal services, which spread to other internal
services. Asynchronous communication with internal services can
be achieved with notification services.

External Document © 2023 Infosys Limited

Systems or Application accessing APIs (Application
Programming Interfaces) on behalf of themselves
or human or another system

Authorization server with OAUth2

An API gateway which performs security screening,
throttling, and publishing analytics to analytical
server

Passing the end user context to the upstream
service with HTTP header or with JWT

Service to service communication protected
with mutual TLS and propagate user context one
service to the other service

Asynchronous communication between two
services can be achieved with notification service
as the message broker

Key players in API management are Google Apigee, Kong API gateway, TYK API gateway, IBM API connect, Oracle API gateway, MuleSoft,
Microsoft, Software AG, Axway, TIBCO Software and WSO2

API Gateway

Systems or Application accessing APIs on
behalf of themselves or human or another
system

1

Authorization server with OAUth22

An API gateway which performs security
screening, throttling , and publishing
analytics to analytical server

3

Service to service communication protected
with mutual TLS and propagate user
context one service to the other service

5

API gateway

Authorization server

External Service
expose outside

with API gateway
Internal service Internal service

Notification service

12

4

5

3

6

Passing the end user context to the
upstream service with HTTP header or with
JWT

4

Asynchronous communication between two
services can be achieved with notification
service as the message broker

6

Sync Sync

Sync

Async

1

2

3

4

5

6

SPA (Single page Application) OAuth 2.0 and
OpenID connect
Users access the client application URL (uniform resource locator)
from the web browser. The client application will redirect the
user to the authorization server. The client application will send
the client ID and redirect the application URL (uniform resource
locator). The authorization server will prompt the user with a

credentials page from the authorization server. After the user
enters the credentials, the information is sent to the authorization
server from the browser. The authorization server sent the access
token back to the client application.

User enters URL of client application in
web browser

Client application will redirect user to
Authorization server

Authorization server prompt for
credentials

User enter credentials

Browser post credential to

Authorization server

Authorization server sends the access
token

1

2

3

4

5

6

SPA (Single page Application) OAuth 2.0 and OpenID connect

Authorization server prompt for
credentials

Client application will redirect user
to Authorization server (Clientid
and redirect url)

2

3

User enter credentials4

Browser post credential
to Authorization server5

Authorization server
sends the access token6

User enters URL of client
application in web browser

1

Client
Application

Authorization
serverWeb Browser

User- Resource
owner

1

2

4

5

6

1

2

3

External Document © 2023 Infosys Limited

Client application server-side and client-side
code
In most cases, single-page applications are used as client
applications. Even though we call it a client application, it has
two sections of code: client and server. Client-side code is sent
from the web app server to the client browser as a bundle and
gets executed by the browser. Server-side code resides on the
web app server and gets executed there. One of the important
responsibilities of server-side code is to act as a proxy service
for the backend microservice running behind the API gateway.

Running this proxy service on a web application server adds more
security for the application as the backend microservices are not
called directly from the client browser. Always from the client
browser, the proxy services on the web app server are called from
client-side code with local host URLs (uniform resource locators).
While calling this proxy service, the OAuth 2.0 token was passed
in the header. Further, on the web app server-side, this token is
validated with the authorization server before calling
the backend microservices.

Secure microservices to microservices
communication with API Key and Database
access with certificate
An API key can be used to secure microservice-to-microservice
communication. It is an identity assigned to a client application by
microservices. The API key is used by the client applications in the
request while calling the microservices. Microservices will validate
this API key for authentication and authorization and either allow
access to the end points or deny it.

Microservice-A wants to access or communicate with
Microservice-B endpoints, then it will make a call with an API key
in the header. The API key can be stored and accessed from the
container cluster management configuration secret specific to the
environment. Microservice-B will have the proxy configuration for
that same API key, which is passed from Microservice-A and allows
access to Microservice-B.

A defense-in-depth strategy is used to secure sensitive services
with additional security layers. Microservice-C is a sensitive

service with a high security requirement, and Microservice-A
needs to access it. For added security, the tokenizer service is
used to provide a service source token. This tokenizer service is
an additional service that will generate and maintain the lifecycle
of the custom service source token. The service source token
will be specific to the transaction and valid for one time. Initially,
Microservice-A will call the tokenizer service with the access token.
This access token will be validated on the authorization server, and
after that, the tokenizer service will provide a service source token.
This additional service source token will be sent in a payload to
Microservice-C along with the API key and access token. After
validating the service source token and access token, a highly
secure service will respond with data or send an error message.

Microservice-A can access database with a certificate and
credentials. The certificate can also be installed dynamically
from the secure location or be installed during the initialization
script. Credentials can be accessed from the cluster management
configuration secret section.

Client browser accessing the application URL the
static contents are sent from web server

Client browsers will store the token they
received in the app state after access it. Backend
microservices are not directly called from the
client browser; instead, it will call a proxy service
running on the web server with this token.

Server-side service proxy will call the backend
microservice with the apikey stored on the
webserver after. OAuth 2.0 token is validated with
authorization server

Apikey from the webserver proxy service request
will be validated in Api gateway and allowed to
access the backend service endpoint

Microservices endpoint sends response to the
proxy service

Webserver proxy service send the response to
client browser and stored in app state

Client application server and client side code

Client browser accessing the application url
the static contents are send from web server1

Client browser after the access token is
received it will be stored in app state .
Microservices are not directly called from
client browser instead it will call a proxy
service running on the webserver with this
token .

2

Server side service proxy will call the
microservice with the apikey stored on the
webserver after .OAUth 2.0 token is
validated with authorization server.

3

Apikey from the webserver proxy service
request will be validated in api gateway and
allowed to access the original service
endpoint

4

Microservices endpoint sends response to
the proxy service 5

Webserver proxy service send the response
to client browser and stored in app state 6

 Client Application
Client-side code

Browser

Client Application Server-side code
Request header token

Apikey

 Microservices
 proxy.yml (apikey

binding)

1 2

4

5

6

A
P
I

G
A
T
E
W
A
Y

Authorization server

3

1

2

3

4

5

6

External Document © 2023 Infosys Limited

Microservice-A calling another Microservice-B with API Key
which it will get dynamically from the cluster management
configuration secret section. This API key would be added in
API proxy with API key binding on another service to allow
access

Microservice-A calling another Highly secure Microservice-C.
Then tokenizer services will be adding more security by
providing service source token. Which needs to provide
during access High secure microservice along with access
token additionally

Tokenizer services provide service source token after
validating the access token

After receiving services source token from tokenizer service.
Microservice-A calls the highly secure Microservice-C with
service source token in the payload along with access token
and API key in header

Highly secure Microservice-C check the service source token
in the payload with tokenizer service and validate along with
the API Key and access token validation

Highly secure Microservice-C send response after the
validation of access token, apikey, service source token

Microservices connect to database with the dynamically
installed security certificates with TLS connection along with
database credentials

Secure microservices to microservices communication and Database
access with certificate

Microservice-A calling another Microservice-
B with API Key which it will get dynamically
from the cluster management configuration
secret section specific to environment . This
API key would be added in API proxy with
API key binding on the another service to
allow access

1

Microservice-A calling another Highly secure
Microservice-C. Then tokenizer services will
be provide additional security by providing
service source token. Which needs to
provide during access High secure
microservice along with access token
additionally

2

Tokenizer services provide service source
token after validating the access token 3

After receiving services source token from
tokenizer service. Microservice-A calls the
highly secure Microservice-C with service
source token in the payload along with
access token and API key in header

4

Highly secure Microservice-C check the
service source token in the payload with
tokenizer service and validate along with the
API Key and access token validation

5

Highly secure Microservice-C send response
after the validation of access token, apikey ,
service source token

6

Microservices connect to database with the
dynamically installed security certificates
from docker file with TLS connection along
with database credentials

7

Microservice-A
Apikeys,

Database credentials
keys info

Certificate

Microservice-B
proxy.yml (apikey

binding)

Microservice-C
Highly secured

proxy.yml (apikey
binding)

Tokenizer
microservices

proxy.yml (apikey
binding)

A
P
I

G
A
T
E
W
A
Y

1

3

4

DB

2

5

6

7

Authorization server

1

2

3

4

5

6

7

Service to service communication with
service mesh
Service-to-service internal communication is done through service
mesh. Data plane and control plane make up the architectural
pattern known as “service mesh.” These planes use abstraction
to isolate microservices from routing, security, observability, and
resilience. Along with the microservices, an in-service mesh service
proxy will be deployed to intercept traffic to and from the ingress
and egress gateways and enforce security. Service-to-service
communication can be secured by mutual TLS (Transport Layer
Security).

Services receiving calls from external applications or external
services are secured by API gateways. Service-to-service internal
communication is done through service mesh. Data plane and
control plane make up the architectural pattern known as service
mesh. These planes use abstraction to isolate microservices from
routing, security, observability, and resilience. Along with the
microservices, an in-service mesh service proxy will be deployed to
intercept traffic to and from the ingress and egress gateways and

enforce security. Service-to-service communication can be secured
by mutual TLS (Transport Layer Security).

Data planes consist of three main components: a service proxy,
an ingress gateway, and an egress gateway. All the requests and
responses will go through the service proxy for the microservice.
It will be responsible for security, monitoring, traffic, service
discovery, and a circuit breaker to support resilience for all
inbound and outbound traffic. All the traffic entering the service
mesh goes through the ingress gateway, which will identify and
dispatch the request to the appropriate service proxy. All the traffic
leaving the service mesh goes through the egress gateway.

Control planes in the service mesh act as a policy administration
point. It consists of the control instruction for the service proxies.

The service mesh architectural pattern has multiple
implementations, like Istio, HasiCrop Consul, AWS (Amazon Web
Services) app mesh, Azure service fabric, and Red Hat OpenShift
service mesh. Istio is an open-source, popular service mesh created
by Google that is widely used for service mesh implementation.

External Document © 2023 Infosys Limited

Microservices Security Patterns
Security patterns are required to minimize the vulnerability of the
system. Following below patterns would reduce the security threat
and attacks from various vectors.

Secure by design: Follow secure code practices to sanitize the
user input. User inputs should be validated on both the client and
the server sides. Especially string data with length validation and
whitelist validation.

All the incoming request to service
mesh goes via ingress gateway

All the call outside from service mesh
goes through the Egress Gateway

Service proxy plays the role of policy
enforcement point

Service Mesh

All the incoming request to service
mesh goes via ingress gateway 1

Call the outgoing traffic from service
mesh goes through the Egress
Gateway

2

Service proxy plays the role of
policy enforcement point3

Certificate
management

Authorization Logging Routing rulesmonitoring

Control plane

Data plane

Ingress
Gateway

Egress
Gateway

Proxy

Microservice

Proxy

Microservice

Proxy

Microservice

mutual TLS

1
2

3

1 2 3

Scan dependencies: Scan the dependencies with libraries and
packages for vulnerabilities as part of your delivery pipeline.
Consider adding a bot like dependabot to automatically scan the
repository for vulnerable packages or libraries and then remediate
with a pull request.

Use HTTPS (Hypertext Transfer Protocol Secure): Use the
certificate for all the sites, even he static content sites. The
communication protocol is encrypted using TLS (Transport
Layer Security) or SSL (Secure Sockets Layer). It authenticates the
accessed web site with the certificate provider. protected data
integrity and privacy during transit.

Secure with access and an identity token: OAuth 2.0 is an
authorization framework, and OpenID Connect is the identity layer
of OAuth 2.0. There are four main actors who play distinct roles in
the access delegation. Resource servers host resources and ensure
accessibility based on certain conditions. The client is a resource
consumer. The end user is the owner of the resources, and the
authorization seraver is the one that issues access tokens. It can
be a reference token or a JSON Web Token, or it can be PASETO
(platform agnostic security token)

Encrypt and protect secrets: Store secrets like API keys and
credentials in environment variables. Use a vault services like AWS
KMS or Azure Key Vault.

Security in the delivery pipeline: Use DevSecOps to inject
security into the delivery pipeline. Use containers, cluster
management lint and scanning, static analysis security testing, and
dynamic analysis security testing in pipeline steps.

External Document © 2023 Infosys Limited

Conclusion
Microservices bring greater value and benefits, and the need for
security for these services also increases. The security patterns and
strategies, like isolation, defense in depth, and DevSecOps, help
improve the security of microservices. Based on our needs and
level of security requirements, we must formulate a microservice
security strategy with an API gateway and/or service mesh.

Recommended approach to secure microservices

•	 Implement OAuth 2.0 and OpenID Connect to secure
microservices at the edge.

•	 Use mutual TLS (Transport Layer Security) and ensure traffic is
secure between services.

•	 Implement an API gateway for exposing the microservices
to the outside world and for managing incoming traffic from
external services and applications.

•	 For internal traffic service-to-service communication, use
service mesh.

•	 Define the DevSecOps delivery pipeline to perform various
security scanning steps for the microservices, like static
code analysis, container scanning, and cluster management
scanning.

References
1.	 Microservice Architecture https://microservices.io/

2.	 Microservices Security in Action https://www.oreilly.com/
library/view/microservices-security-in/9781617295959/

3.	 How to Secure Microservices Architecture https://
securityintelligence.com/posts/how-to-secure-microservices-
architecture/

4.	 Microservices Security: Challenges and Best Practices https://
www.aquasec.com/cloud-native-academy/cloud-native-
applications/microservices-security/

Author

External Document © 2023 Infosys Limited

https://microservices.io/
https://www.oreilly.com/library/view/microservices-security-in/9781617295959/
https://www.oreilly.com/library/view/microservices-security-in/9781617295959/
https://securityintelligence.com/posts/how-to-secure-microservices-architecture/
https://securityintelligence.com/posts/how-to-secure-microservices-architecture/
https://securityintelligence.com/posts/how-to-secure-microservices-architecture/
https://www.aquasec.com/cloud-native-academy/cloud-native-applications/microservices-security/
https://www.aquasec.com/cloud-native-academy/cloud-native-applications/microservices-security/
https://www.aquasec.com/cloud-native-academy/cloud-native-applications/microservices-security/

© 2023 Infosys Limited, Bengaluru, India. All Rights Reserved. Infosys believes the information in this document is accurate as of its publication date; such information is subject to change without notice. Infosys
acknowledges the proprietary rights of other companies to the trademarks, product names and such other intellectual property rights mentioned in this document. Except as expressly permitted, neither this
documentation nor any part of it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, printing, photocopying, recording or otherwise, without the
prior permission of Infosys Limited and/ or any named intellectual property rights holders under this document.

For more information, contact askus@infosys.com

Infosys.com | NYSE: INFY Stay Connected

Saravana Krishnan Palani

Senior Technology Architect

About the Author

About the Mentors

Jitendra Jain

Principal Technology Architect;

CLOUD PROFESSIONAL

Amit Chandra Kesh

Senior Technology Architect

Partha Konwar

Senior Technology Architect

mailto:askus@infosys.com
https://www.infosys.com/
https://twitter.com/infosys
https://www.linkedin.com/company/infosys
https://www.youtube.com/user/Infosys
mailto:Saravanakrishnan_P@infosys.com
mailto:jitendra_jain04@infosys.com
mailto:mailto:amitc_kesh%40infosys.com?subject=
mailto:mailto:partha.konwar%40infosys.com?subject=
https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.linkedin.com%2Fin%2Fsaravanakrishnanpalani&data=05%7C01%7CRajigomathi_T%40infosys.com%7C5ebf26c81670496c6d8a08db09d54bb6%7C63ce7d592f3e42cda8ccbe764cff5eb6%7C0%7C0%7C638114584119717779%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=XpCIQi60Ryn%2BvrkGRCfXQd0YtO7Cvc87yMcobeVdG1k%3D&reserved=0
https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.linkedin.com%2Fin%2Fjitendrajain1%2F&data=05%7C01%7CRajigomathi_T%40infosys.com%7C5ebf26c81670496c6d8a08db09d54bb6%7C63ce7d592f3e42cda8ccbe764cff5eb6%7C0%7C0%7C638114584119873986%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=5ecN3%2Brg3cExsdsFRUtcI%2Ftdd%2FSDPIoGOyf4Oq9jhmk%3D&reserved=0
https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.linkedin.com%2Fin%2Famitkesh%2F&data=05%7C01%7CRajigomathi_T%40infosys.com%7C5ebf26c81670496c6d8a08db09d54bb6%7C63ce7d592f3e42cda8ccbe764cff5eb6%7C0%7C0%7C638114584119873986%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=Kdn6VJzcF2RD6pDSXFK9Bo5jW%2BQ7ezisESsLnArxrBE%3D&reserved=0
https://apc01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.linkedin.com%2Fin%2Fpartha-protim-konwar-304617200&data=05%7C01%7CRajigomathi_T%40infosys.com%7C5ebf26c81670496c6d8a08db09d54bb6%7C63ce7d592f3e42cda8ccbe764cff5eb6%7C0%7C0%7C638114584120030201%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=VnS7TUDVPkLCfUCsvLJJ1x9Sy3%2F1gruay%2FSpuF0vHZQ%3D&reserved=0

